339 research outputs found

    Bridging the gap by shaking superfluid matter

    Full text link
    In cold compact stars, Cooper pairing between fermions in dense matter leads to the formation of a gap in their excitation spectrum and typically exponentially suppresses transport properties. However, we show here that weak Urca reactions become strongly enhanced and approach their ungapped level when the star undergoes density oscillations of sufficiently large amplitude. We study both the neutrino emissivity and the bulk viscosity due to direct Urca processes in hadronic, hyperonic and quark matter and discuss different superfluid and superconducting pairing patterns.Comment: 5 pages, 4 figure

    Viscous damping of r-modes: Small amplitude instability

    Full text link
    We study the viscous damping of r-modes of compact stars and analyze in detail the regions where small amplitude modes are unstable to the emission of gravitational radiation. We present general expressions for the viscous damping times for arbitrary forms of interacting dense matter and derive general semi-analytic results for the boundary of the instability region. These results show that many aspects, like in particular the physically important minima of the instability boundary, are surprisingly insensitive to detailed microscopic properties of the considered form of matter. Our general expressions are applied to the cases of hadronic stars, strange stars, and hybrid stars, and we focus on equations of state that are compatible with the recent measurement of a heavy compact star. We find that hybrid stars with a sufficiently small core can "masquerade" as neutron stars and feature an instability region that is indistinguishable from that of a neutron star, whereas neutron stars with a core density high enough to allow direct Urca reactions feature a notch on the right side of the instability region.Comment: 22 pages, 16 figures, published versio

    Viscous damping of r-modes: Large amplitude saturation

    Full text link
    We analyze the viscous damping of r-mode oscillations of compact stars, taking into account non-linear viscous effects in the large-amplitude regime. The qualitatively different cases of hadronic stars, strange quark stars, and hybrid stars are studied. We calculate the viscous damping times of r-modes, obtaining numerical results and also general approximate analytic expressions that explicitly exhibit the dependence on the parameters that are relevant for a future spindown evolution calculation. The strongly enhanced damping of large amplitude oscillations leads to damping times that are considerably lower than those obtained when the amplitude dependence of the viscosity is neglected. Consequently, large-amplitude viscous damping competes with the gravitational instability at all physical frequencies and could stop the r-mode growth in case this is not done before by non-linear hydrodynamic mechanisms.Comment: 18 pages, 17 figures, changed convention for the r-mode amplitude, version to be published in PR

    3D Surface Measurement for Medical Application—Technical Comparison of Two Established Industrial Surface Scanning Systems

    Get PDF
    In 3D mapping of flexible surfaces (e.g. human faces) measurement errors due to movement or positioning occur. Aggravated by equipment- or researcher-caused mistakes considerable deviations can result. Therefore first the appliances' precision handling and reliability in clinical environment must be established. Aim of this study was to investigate accuracy and precision of two contact-free 3D measurement systems (white light vs. laser). Standard specimens of known diameter for sphere deviation, touch deviation and plane deviation were tested. Both systems are appropriate for medical application acquiring solid data (<mm). The more complex white-light system shows better accuracy at 0.2s measuring time. The laser system is superior concerning robustness, while accuracy is poorer and input time (1.5-2.5s) longer. Due to the clinical demand the white-light system is superior in a laboratory environment, while the laser system is easier to handle under non-laboratory condition

    A simple single-source precursor route to the nanostructures of AlN, GaN and InN

    Get PDF
    In an effort to find a simple and common single-source precursor route for the group 13 metal nitride semiconductor nanostructures, the complexes formed by the trichlorides of Al, Ga and In with urea have been investigated. The complexes, characterized by X-ray crystallography and other techniques, yield the nitrides on thermal decomposition. Single crystalline nanowires of AlN, GaN and InN have been deposited on Si substrates covered with Au islands by using the complexes as precursors. The urea complexes yield single crystalline nanocrystals under solvothermal conditions. The successful synthesis of the nanowires and nanocrystals of these three important nitrides by a simple single-precursor route is noteworthy and the method may indeed be useful in practice
    corecore